“阳康”中如何运动?专家提醒:把握节奏与强度,循序渐进恢复锻炼******
“阳康”中如何运动?专家提醒——
把握节奏与强度,循序渐进恢复锻炼
华声在线全媒体记者 周倜
眼下,不少新冠感染者陆续处于“阳康”的恢复阶段,何时可以恢复体育锻炼、选择哪种运动方式等话题,受到大家关注。1月9日,湖南省国民体质监测中心主任王奎针对以上热点予以解答。
循序渐进,分阶段恢复运动
“‘转阴’之后,应注意至少7至10天避免任何运动,保持静养休息。在身体逐渐恢复活力之后,可分5个阶段逐渐恢复运动锻炼频次。”王奎表示,“阳康”过后,运动锻炼需慢慢来,注意把握节奏,切勿盲目“上强度”。
王奎介绍,“五阶段恢复法”是不错的方式,该方法采取进阶式,每次进阶时间不得低于7天。人们可参考下列方法:
第一阶段为“阳康”后的第二周。此时可开始呼吸训练、拉伸、平衡练习等。以上运动基本不会耗费体力,可参照执行。
第二阶段为“阳康”后的第三周。瑜伽、相对较快的步行等低强度的运动是适合选项,也可居家进行简单且强度较低的家务劳动,每天开展10—15分钟,逐渐恢复体能。
第三阶段为“阳康”后的第四周。此阶段可逐渐开始进行低强度有氧练习和力量练习,如健步走、上下楼梯、慢骑自行车等,每次5分钟,每天开展2次。如果身体可以承受,可在次日运动时适度增加运动频次与强度,每周开展3—5天,每天总运动时间10—30分钟。
第四阶段为“阳康”后的第五周。可开展中等强度的有氧和力量练习,运动量可以恢复至平时状态的80%左右,可进行跑步、长距离骑行、舞蹈课、各种负重力量练习、功能性训练等,每周开展3—5天,每天总运动时间30—60分钟。
第五阶段为“阳康”后的第六周。此时可恢复至正常状态,按平日运动计划和习惯进行运动即可。
值得注意的是,运动过程中须及时监测心率变化及主观感觉,一旦有异常,如呼吸困难、胸闷、心悸、发热等症状,须立即停止恢复运动的进程,必要时寻求医疗帮助。
鼓励老年群体以居家锻炼为主
“阳康”阶段的老年群体健康问题,不容忽视。
王奎表示,冬季气温低,加之新冠病毒仍在,此时老年朋友不适合进行户外锻炼。无论是否已经感染新冠病毒,还是正处于感染后的恢复期,老年朋友都应以居家模式为主。
针对老年人居家,如何引导其确保自身基本的肌肉力量,预防骨质疏松等问题,王奎建议,可充分利用家中的沙发、桌椅等物件进行简单锻炼。比如,简单的起坐练习是不错选项,通过交替站起和坐下的动作,不仅能保证老年人的心肺耐力得到锻炼,也足以改善老年人肌肉流失等情况。
此外,家中的桶装水和油壶都可以作为老年人做力量练习的道具。可在老年人承受能力范围内,为其配备相应的液体容量在桶内,便于锻炼,确保安全。
可根据方法进行呼吸训练
呼吸训练法是王奎推荐的有效锻炼方式。它不仅是新冠病毒感染者在恢复阶段时能最快采用的运动方法,也有助于尽快恢复机体功能。
王奎介绍,常见的呼吸方式包括胸式呼吸和腹式呼吸。胸式呼吸指在呼吸时胸腔扩充为主;腹式呼吸指在呼吸时腹部扩充为主,胸腔移动较少,又称膈式呼吸,是更为高效的呼吸方式。
训练时,可把双手分别放置胸腔、腹部,感受胸腔、腹腔是否全面“外扩”。此外,保持吸气3秒、呼气7秒的节奏,多次训练。也可尝试鼻腔吸气、用嘴呼气的方法,该方法若不能熟练掌握,可利用“吹气球”的方式进行辅助。
“呼吸训练法,老少咸宜,不费体力,正处于恢复阶段的群众可自行训练,逐渐掌握,帮助自身尽快康复肺功能。”王奎说。
具超长可重复相干时间的通量量子比特问世******
以色列巴伊兰大学物理系暨量子纠缠科学与技术中心迈克尔·斯特恩及其同事基于一种称为超导通量量子比特的不同类型的电路构建超导处理器。在发表于《物理评论应用》上的一篇论文中,他们提出了一种控制和制造通量量子比特的新方法,该方法具有前所未有的可重复长相干时间。
通量量子比特是一种微米大小的超导环路,其中电流可顺时针或逆时针流动,也可双向量子叠加。与传输子(transmon)量子比特相反,这些通量量子比特是高度非线性的对象,因此可在非常短的时间内以高保真度(即无错误地进行计算的能力)进行操作。
超导传输子量子比特被认为是可扩展量子处理器的基本构建块。多年来,传输子量子比特的保真度不断提高,IBM、亚马逊和谷歌等科技巨头在最近的竞争中相继展示了量子优越性。
但随着处理器变得越来越大,如IBM刚刚宣布推出一款具400多个传输子量子比特的处理器,此类系统的保真度和可扩展性要求变得越来越严格。特别是,传输子量子比特是弱非线性对象,这本质上限制了它们的保真度,并且由于频率拥挤的问题带来了对可扩展性的担忧。
而通量量子比特的主要缺点是,它们特别难以控制和制造,这导致了相当大的不可重复性,之前它们在工业中的使用仅限于量子退火优化过程。
在新研究中,研究团队与澳大利亚墨尔本大学合作,使用新颖的制造技术和最先进的设备,成功地克服了这一范式的重大障碍。
斯特恩表示,他们在这些量子比特的控制和可重复性方面取得了显著改善。这种可重复性使他们能够分析阻碍相干时间的因素并系统地消除它们。这项工作为量子混合电路和量子计算领域的许多潜在应用铺平了道路。
这项研究得到了以色列科学基金会的支持。(记者张梦然)